
Manual No.:

Harmonic Analysis

Advanced Physics Laboratory

ETH Zurich

Author: Reiner Mühle
Translation: Colin v. Negenborn

September 2001
December 2010



0 Contents

Contents

1 Introduction 3

2 Tasks 4

2.1 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Frequency Analysis . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Modulation Techniques . . . . . . . . . . . . . . . . . 5
2.2.3 Band-pass Filter . . . . . . . . . . . . . . . . . . . . . 5

2.3 Acquired Knowledge . . . . . . . . . . . . . . . . . . . . . . . 6

3 Theory 7

3.1 Fourier Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Transfer Functions of Linear Systems . . . . . . . . . . . . . . 8

3.2.1 General Comments . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Low-pass . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 High-pass . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.4 Band-pass . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . 21
3.5 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . 22

4 The Experimental Set-Up 23

4.1 General Circuit Diagram . . . . . . . . . . . . . . . . . . . . . 23
4.2 Description of the Specific Components . . . . . . . . . . . . 24

4.2.1 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Ramp Generator . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 The Experimental Procedure 25

5.1 Characteristics of the Rectifier . . . . . . . . . . . . . . . . . 25
5.2 Characteristics of the Filter . . . . . . . . . . . . . . . . . . . 25
5.3 Balanced Modulation . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Finding Fourier Spectra . . . . . . . . . . . . . . . . . . . . . 26
5.5 Determining the Total Harmonic Distortion . . . . . . . . . . 26

6 Annex (Circuit Diagrams of the Devices) 27

7 Bibliography 29

Harmonic Analysis 2/29



1 Introduction

1 Introduction

For the transfer of messages via electromagnetic signals it is generally neces-
sary to fit those signals to the properties of the transmission channel through
modifications [3]. A wireless information transmission with reasonable com-
plexity, for instance, is only possible above a certain frequency limit. The
signal that shall be transmitted therefore has to be transposed from its orig-
inal frequency to a higher frequency range. This signal conversion is called
modulation.

By transposing the signal and transmitting it at a different frequency
range one can, to some extent, also achieve an improvement in the signal-
to-noise ratio.

The modulation applied at the sender’s side of the channel needs to be
reversed at the receiver’s side through demodulation such that the trans-
mitted signal is available in its original frequency range.

For the process of modulation, a carrier wave is influenced by the modu-
lating signal. In the case of a sinusoidal carrier wave, the technique of “mod-
ulation” can be used to vary the parameters amplitude, frequency and phase
angle. Thus, a distinction is drawn between amplitude (AM), frequency
(FM) and phase modulation (PM). The last two always occur together and
are also called angle modulation.

In the experiment at hand, the process of amplitude modulation will be
is analysed in greater detail [1].
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2 Tasks

2 Tasks

In this experiment, a frequency analysis (Fourier analysis, harmonic anal-
ysis) of various signals (square, triangle, etc.) shall be carried out using a
band-pass filter. For this purpose, the amplitude of a carrier wave is influ-
enced by a signal’s wave via a modulator. The results shall be compared to
those from a Fourier analysis (FFT: Fast Fourier Transform) conducted on
a digital oscilloscope, to those from a Fourier analysis of the digitally saved
signal data, and to the coefficients calculated from the respective Fourier
series.

2.1 Devices

For the experimental set-up, the following devices are available:

1. PC with GPIB card, LabView with software (Harmonic analysis),
Wavestare for TDS210

2. 2 Keithley multimeters 2700

3. Wavetek 5 MHz function generator, model FG-5000 for carrier signal

4. Wavetek 4 MHz function generator, model 182A for modulation signal

5. 101 Pulse generator with variable pulse width 1

6. pulse generator (self-construction) 1

7. modulator

8. band-pass filter

9. rectifier

10. ramp generator

11. analogue two-channel oscilloscope, Tectronix 2205 20 MHz

12. digital oscilloscope, Tectronix TDS210, 60 MHz 2

1only one device each for all workstations
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2 Tasks

2.2 Preparation

In order to carry out the experiment easily and efficiently, it is absolutely
necessary to thoroughly and critically work through this experiment’s
manual and to gain an overview of the following key aspects with the liter-
ature denoted in section 7:

2.2.1 Frequency Analysis

• Fourier series:

– calculation of the Fourier coefficients of signals that will be anal-
ysed in detail in the experiment

• Fourier transformation:

– system analysis

2.2.2 Modulation Techniques

• Amplitude modulation:

– double-sideband modulation with carrier

– double-sideband modulation without carrier

– single-sideband modulation

– degree of modulation

– balanced modulation

• Angle modulation:

– frequency modulation

– phase modulation

• Pulse modulation

2.2.3 Band-pass Filter

• High-pass

• Low-pass

• Band-pass

• Resonance frequency
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2 Tasks

• Q factor of the filter

• Bandwith

2.3 Acquired Knowledge

After completion of the experiment, one should have understood the follow-
ing key aspects:

• Modulation techniques for telecommunication

• Fourier transform, Fourier series

• Fast-Fourier-Transform (FFT)

• Measured value acquisition (frequencies, alternating current voltage,
direct current voltage)

• analogue oscilloscope

• digital oscilloscope

Harmonic Analysis 6/29



3 Theory

3 Theory

3.1 Fourier Spectra

Signals can be described both as a function of time and as function of the
frequency. The latter is more abstract, but of equal value. The advantages
of a description in the frequency domain are inter alia:

• elegant system analysis (frequency response, transfer function)

• examination of the spectral cleanness of the signal

• general signal analysis and signal synthesis

• conclusions about necessary bandwith for transmissions.

The transition from the time domain to the frequency domain is achieved
with the Fourier transform:

F (ω) =

� +∞

−∞
f (t) · e−iωtdt. (1)

The inverse transformation gives us the signal as an integral of the am-
plitude density, multiplied by harmonic functions:

f (t) =
1

2π

� +∞

−∞
F (ω) · eiωtdω. (2)

For periodic signals, f (t), the Fourier spectrum, F (ω), is discrete, i.e.
only certain discrete frequencies exist. Thus, periodic signals of period T
can be expanded as a series, the so-called Fourier series:

f (t) =
+∞�

n=−∞
cn · einω0t, (3)

with the coefficients given as

cn =
1

T

�
T

0
f (t) · e−inω0tdt, (4)

where ω0 is the fundamental frequency in the time domain. In contrast
to equation (1) one notices that only integer multiples of a fundamental
frequency appear. If we consider the limit T = 2π/ω0 → ∞, we can see
that the discrete spectral lines move closer and closer until they form a
continuous spectrum as in equation (1).
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3 Theory

If f (t) is an even function, F (ω) is real. If f (t) is odd, however, F (ω) is
purely imaginary. The same applies to the coefficients, cn.

3.2 Transfer Functions of Linear Systems

3.2.1 General Comments

We consider a system where an input function, fin (t), generates an output
function, fout (t), at the exit. The system shall be linear, i.e. the superpo-
sition principle can be applied. The output function of two arbitrary input
functions is therefore equal to the sum of the output functions of the re-
spective input functions. Thus, if an input signal has been dissected into
its harmonic components by the use of a Fourier transform (or Fourier se-
ries), one can transfer every single component through the system and then
superpose all output signals in the transmission.

The output signal, fout (t), can then be written as weighted sum of all
input signals at different times, τ :

fout (t) =

� +∞

−∞
g (t, τ) · fin (t) dτ (5)

The function g (t) is the weighting function of the system, i.e. describing
the contribution of the input function, fin (t), to the output function, fout (t),
at time, τ .

Applying the Fourier transform and transferring the system to the fre-
quency domain, the output function’s Fourier transform is now given by the
simple algebraic equation

Fout (ω) = G (ω) · Fin (ω) (6)

Figure 1 visualises the connection between the system description in the
time and frequency domains.

Fin(ω) Fout(ω)fin(t) fout(t)
g(t) G(ω)

Convolution Multiplication!
Fourier Transform

Figure 1: System description in the time and frequency domains
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3 Theory

The function G (ω), being the Fourier transform of g (t), describes the
impact of the system on the harmonic signals of frequency, ω, and is also
called the transfer function of the system.

G (ω) =
Fout (ω)

Fin (ω)
=|G (ω) | · eiφ(ω) (7)

As is the case for any complex number, G (ω) is well-defined by its abso-
lute value and phase and can be visualised as a vector in the complex plane.
|G (ω)| then describes the vector’s length and φ is the angle between the
vector and the real axis. |G (ω)| is also called the system’s amplification and
is measured in decibel (dB):

V = 10 · log
�
Fout (ω)

Fin (ω)

�2

= 20 · log (|G (ω)|) , (8)

|G (ω)| and φ can be derived from G(ω):

|G (ω)| =
�
[�(G)]2 + [�(G)]2 =

√
GG∗ (9)

tanφ =
�(G)

�(G)
(10)

where we used

G∗ the complex conjugate of G,
�(G) the real part of G,
�(G) the imaginary part of G.

We will now compute the transfer functions for several systems which
will be needed in the experiment at hand.

3.2.2 Low-pass

The low-pass filter is a circuit component which transfers low frequencies
unaltered but damps the amplitudes of higher frequencies and shifts their
phases. The set-up of a simple low-pass filter with resistor, R, and capacitor,
C, is depicted in figure 2.

We derive the equation for the transfer function:
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Figure 2: Passive low-pass

uout(t) =
q(t)

C
+ uout(0) =

1

C

�
i(t) · dt+ uout(0)

=
1

C

�
uin(t)− uout(t)

R
· dt+ uout(0)

d

dt
uout(t) =

1

C

�
uin(t)− uout(t)

R

�

The Fourier transform of both sides yields:

iω · Uout(ω) =
1

C

�
Uin(t)− Uout(t)

R

�

The transfer function of the filter is therefore given as:

G(ω) =
Uout(ω)

Uin(ω)
=

1

1 + iωRC
=|G (ω)| ·eiφ(ω) (11)

From equation (11) one can see that higher frequencies are damped. In
order to specify this proposition, we describeG(ω) in the so-called Bode plot.
It consists of the two following illustrations:

1. Absolute value: V = 20 · log |G(ω) | = V [log(ω)]
2. Phase: φ = φ [log(ω)]

In our example, we have

V = −10 · log
�
1 + (ωRC)2

�
,

φ = − arctan (ωRC)
(12)

The frequency where the amplification drops by the factor
√
2 or 3dB,

respectively, is called the cutoff frequency, ωc. For the passive low-pass we
get:
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Figure 3: Bode plot for a passive low-pass (R = 100Ω, C = 1µF )

Harmonic Analysis 11/29



3 Theory

ωc =
1

RC

as can be derived from equations (11) and (15). By introducing a nor-
malized complex frequency, P :

P = i
ω

ωc

(13)

we can write G(ω) in a more general form, which results in a clearer
description for complicated systems:

G(P ) =
1

1 + P

If n low-passes are connected in series, the frequency response has the
following form:

G(P ) =
1

(1 + a · P )(1 + b · P )(1 + c · P ) . . .

where the constants a, b, c, . . . denote the respective cutoff frequencies of
the particular low-passes. This equation can be rewritten in the following
general form:

G(P ) =
1

1 +
�

n

i=1 aiP
i

Here, the ai are the positive, real coefficients and n (the highest power
of P ), is the order of the filter.

3.2.3 High-pass

A basic passive high-pass filter is depicted in figure 4. It transfers high
frequencies unaltered but damps the amplitudes of lower frequencies and
shifts their phases, as seen in figure 5.

The transfer function, G(ω), of the high-pass filter can then be written
as:

G(ω) =
iωRV

1 + iωRC
=

P

1 + P
=

1

1 + 1/P
(14)

The amplification and phase are therefore given by:

Harmonic Analysis 12/29



3 Theory

Figure 4: Passive high-pass

V = −10 · log
�
1 +

�
1

ωRC

�2
�
,

φ = − arctan

�
1

ωRC

� (15)

If n high-passes are connected in series, the frequency response (14) has
the following form:

G(P ) =
1

1 +
�

n

i=1 aiP
−i

(16)

3.2.4 Band-pass

By series connection of a high-pass filter and a low-pass filter , one can
create a band-pass filter. In order to produce the simple multiplication
of the transfer functions, the series connection has to be carried out non-
reactively. This can achieved, e.g., by including operational amplifiers (op-
amp) as impedance converters, see figure 6. This way, an active amplification
could also be implemented.

The transfer functions GL(ω) for the low-pass and GH(ω) for the high-
pass are given as:

GL(ω) =
1

1 + iωRLCL

(17)

GH(ω) =
iωRHCH

1 + iωRHCH

(18)

Multiplication yields the GBP for the band-pass:
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Figure 5: Bode plot for a passive high-pass (R = 100Ω, C = 1µF )

uin(t) uout(t)op-amp

low-pass high-passimpedance converter

RL
CL RH

CH

Figure 6: Passive band-pass
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GBP (ω) =
iωRHCH

1 + iω (RHCH +RLCL)− ω2RHCHRLCL

. (19)

With

ω0 angular resonance frequency,
P = i ω

ω0
normalized angular frequency,

τH = RHCH high-pass time constant,
τL = RLCL low-pass time constant,

equation 19 changes to

GBP (P ) =
ω0τHP

1 + ω0 (τH + τL)P + ω2
0τHτLP 2

≡ aP

1 + bP + cP 2
(20)

At the resonance frequency ω0, |G (ω) | has a maximum, P = i. The
following equation has to hold:

∂ |G(ω)|
∂ω

at ω = ω0

This is only possible for c = 1. Therefore, G(ω0) is real and the amplifi-
cation at resonance is given by:

G0 = G(ω0) =
a

b
(21)

3.3 Amplitude Modulation

For the amplitude modulation – as the name implies –, the amplitude of a
high-frequency carrier signal, uC(t), is being modified in the rhythm of a
low-frequency modulation signal, uM (t). The easiest device to achieve this
is a analogue multiplier (see annex for the internal circuit) as depicted in
figure 7.

If both input signals are harmonic, the output signal of an ideal modulator
is also harmonic. KA is an offset which raises or lowers the carrier signal and
m is the degree of modulation, characterizing the strength of the modulation.
It is being varied by adding an offset KB to the modulation signal. Both
quantities can be adjusted through potentiometers at the modulator. The
modulator has an amplification, α, with a constant value of approximately
0.1 for the device at hand.
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uC(t)

uM(t)

Figure 7: Analogue multiplier as modulator

With the input signals

uC (t) = A+ ûC cos (ωC · t) (22)

for the carrier signal and

uM (t) = B + ûM cos (ωM · t) (23)

for the modulation signal, the output signal after the modulator is given as

f(t) = α · [A+KA+ ûC · cos (ωC · t)] · [B +KB + ûM · cos (ωM · t)]
f(t) ≡ α ·

�
A� + ûC · cos (ωC · t)

�
·
�
B� + ûM · cos (ωM · t)

� (24)

where we used the the abbreviations A� = A+KA and B� = B +KB.

The signals are characterized by the following quantities:

ûT and ûM signal amplitudes
ωT = 2πfT and ωM = 2πfM angular frequencies
TT = 1

fT
and TM = 1

fM
periodic time of the signals.

Thus, one receives an amplitude-modulated oscillation. Figures 8 and 9
show the amplitude modulation of two harmonic signals for visualization.
The effects of a change in the constants KA and KB are illustrated.

For both signals the following quantities were assumed:

ωM =
2π

TM

, ωC = 20ωM , ûM = 0.6, ûT = 0.8.

In figure 8, the modulation was set for the values A� = 0.5 and B� = 1.
In figure 9, the constant KA was changed such that A� = 0 was set. This
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Figure 8: Amplitude modulation for A� = 0.5, B� = 1

Figure 9: Amplitude modulation for A� = 0.5, B� = 1
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yields the following expression for the modulated oscillation’s output signal
(with A� = 0):

f(t) ≡ α · ûC ·
�
B� + ûM cosωCt

�
· cosωCt

= α · ûC ·
�
B� cosωCt+ ûM cosωM t · cosωCt

� (25)

This expression can be rewritten as

f (t) = α·ûC ·
�
B� cosωCt+

ûM
2

[cos (ωC + ωM ) t+ cos (ωC − ωM ) t]

�
(26)

One notices that besides the carrier frequency, ωC , two other frequencies
appear, symmetrically arranged around the carrier frequency (see figure 10).

In most cases, not only one specific signal frequency is being transmit-
ted, but a whole frequency band. Therefore, one speaks about sidebands
occurring in the spectrum symmetrically around the carrier frequency, called
the upper sideband (USB) and the lower sideband (LSB) respectively. By
transposing the signal’s frequency band to the carrier’s frequency range,
the upper sideband appears in the so-called normal position and the lower
sideband in the inverted position.

Both side frequencies contain all information of the modulation signal,
apart from the phase. The envelope uE(t) of the amplitude-modulated oscil-
lation (i.e. the progression of the carrier oscillation’s amplitude, dependent
on the modulation signal ) follows the rhythm of the signal oscillation.

Denoting the carrier amplitude’s oscillation around the original value,
û�
C
= α · ûC · B�, as amplitude swing, ∆ûC , one can (for B� �= 0) define the

degree of modulation m as

m =
∆ûC
û�
C

=
ûM/B�

α · ûC ·B� =
ûM
ûC

1

α ·B�2 (27)

Therewith, the envelope’s equation is given as

uE(t) = α · ûC ·
�
B� + ûM cosωmt

�

= α · ûC ·B�
�
1 +

ûM
B� cosωM t

�
= û�C [1 +m · cosωM t] .

(28)

The experimental value of degree of modulation can be determined either
via the time function or the spectrum of the amplitude-modulated oscilla-
tion. For this purpose, the modulating signal, ûM , is fed to the oscilloscope
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û

ω

m/2 û'C m/2 û'C

û'C

Figure 10: Spectrum of the amplitude-modulated oscillation

as the horizontal deflection (x-axis) and the modulated signal, f(t), as the
vertical deflection (y-axis). The triggering is carried out with ûM . In the
standard time display, m can be calculated via the enveloping curve’s mini-
mum and maximum value:

Amax = û�
Cmax

= û�C · (1 +m) ,

Amin = û�
Cmin

= û�C · (1−m) .

Therefore, the degree of modulation can be derived from the oscillation’s
plot as

m =
Amax −Amin

Amax +Amin

(29)

Particularly for the control of a constantly varying degree of modulation,
m can be determined from the so-called modulation trapezium. One uses the
x-y-display at the oscilloscope. The resulting oscillogram shows a trapezium
with the sides 2 ·Amax and 2 ·Amin given that there is no phase shift between
the envelope and the modulation signal, as displayed in figure 11.

Thus, for α = 1 and B� = 1 the degree of modulation is given as the
ratio of the signal amplitude to the unmodified carrier amplitude, as seen in
equation 27.

In figure 12 the modulated signal is displayed for a degree of modulation
m = 1. The curves with side frequencies, ωC ± ωM , thus have half the
intensity of the central curves with carrier frequency, ωC , in this case.

From the frequency spectrum one can also calculate the power, PAM ,
of the amplitude-modulated oscillation, related to the power, PC , of the
unmodulated carrier oscillation:

PAM = PC + PUSB + PLSB = PC ·
�
1 +

m2

4
+

m2

4

�
. (30)
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balanced

Figure 11: Modulation trapezium for different values of the degree of mod-
ulation m

Figure 12: Amplitude modulation for m = 1
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Figure 13: Amplitude modulation for balance modulation (without carrier
signal

This result can easily be derived from the calculation of the power in the
alternating current circuit. It follows that for full modulation (m = 1), half
of the total power has to be invested into the carrier frequency. In this case,
the total power of the sender increases to up to 1.5 times the carrier power.
Therefore, one generally tries to totally suppress the carrier frequency at the
sender’s side and then add it at the receiver’s side. This process is called
balanced modulation. As visible in equation (26), this can be achieved via
B� = B + KB = 0. We therefore change KB (potentiometer “degree of
modulation”) until the carrier frequency vanishes.

The output signal for balanced modulation is then given as

f(t) ≡ α · ûC · ûM cosωM t · cosωCt . (31)

The result is displayed in figure 13. The x-y-plotting at the oscilloscope
yields a curve symmetrical about the y-axis, see also figure 11.

3.4 Total Harmonic Distortion

The total harmonic distortion (THD) indicates the quality of an harmonic
signal. It is defined as

K =

��
n=2 c

2
n

c21
(32)

The cn denote the amplitudes in the Fourier spectrum (c1: fundamental os-
cillation). Thus, if a signal only consists of a single harmonic (fundamental)
oscillation, its THD is equal to zero. The bigger the THD, the worse the
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signal’s quality. In acoustic engineering, a sound with K ≤ 1% is described
as good.

3.5 Discrete Fourier Transform

With the digital oscilloscope TDS 210, the plotted signal can be saved dig-
itally. The chosen time scale, B, is divided into n = 2, 500 intervals and
saved as a table with the pairs of variates, (tr, ar), where r = 1, . . . , n. The
quantity, ar, is the signal’s value at time, tr.

There are various definitions of a Fourier transform. In Mathematica, the
Fourier transform, bs, is defined as a list, ar, of length, n, with the following
expression:

bs =
1√
n

n�

r=1

are
2πi (r−1)(s−1)

n . (33)

One has to consider that the value of bs can be complex (convert to |bs |)
and that the term belonging to zero frequency appears at position 1 in the
resulting list.

As the screen is 10 units wide, the total time scale covers Bg = 10 · B.
The corresponding frequency interval per point is then given as 1

Bg
.

For B = 250µs we have

1

Bg

=
1

2500µs
=

4

103 · 10−6s
= 4

kHz

point
.
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4 The Experimental Set-Up

Signal

Modulator

Carrier Signal

Ramp 
Generator

Filter Rectifier

Computer

Frequency 
Measurement

Amplitude 
Measurement

fM, VM

fC, VC

VS

fC

Figure 14: Sketch of the experimental set-up for amplitude modulation

4 The Experimental Set-Up

4.1 General Circuit Diagram

In order to measure specific frequency components of a spectrum, electronic
analysers are especially appropriate. The best frequency resolution can be
achieved with an heterodyne analyser. Such devices operate similarly to a
radio receiver. The general circuit diagram is displayed in figure 14. The
signal to be analysed (with frequency, fM ) is fed to a modulator, where it
modulates the amplitude of a carrier signal (with higher, variable frequency
fC). At the modulator’s output, the spectrum of the lower-frequency signal,
appears as the lower and upper side band of the carrier signal. Thus, the
information of the modulation signal is available in the modulated signal
twice.

After the modulator, a filter of fixed resonance frequency, fR, is con-
nected. By varying the carrier frequency, this allows a sampling scan of the
concurrently changing spectrum. After rectifying the signal with a precision
rectifier, the amplitude can be measured and plotted on the oscilloscope or
the computer.
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4 The Experimental Set-Up

4.2 Description of the Specific Components

The circuits of the specific electronic components are listed in the annex.

4.2.1 Modulator

In the experiment, an analog multiplier as described in 3.3 is being used.
The amplification factor, α, is 0.1. The offset voltages, KA and KB, for
carrier and modulation signal can be changed by means of potentiometers.

4.2.2 Filter

A band-pass filter of third order is used. The Q factor is given as approxi-
mately 100, the resonance frequency as 90kHz. The filter’s Q factor can be
increased internally but decreases the range of linear amplification.

4.2.3 Ramp Generator

The ramp generator creates a voltage which linearly increases with time.
This voltage controls the frequency, fC , of the Voltage Controlled Oscillator
(VCO). It is also used for synchronisation of the x-y-plotting at the oscillo-
scope (see Figure 14). The output voltage, Uout, can be changed through the
variable potentiometer “voltage” in a range of 0− 10V . The time constant
can be set through the potentiometer “time” in a range of approximately
30 − 330s. The mutual dependence between the potentiometer adjustment
and the time is not linear.

If the ramp generator is started, the frequency of the test signal generator
with chosen time constant is linearly increased from the starting frequency,
fS , to the final frequency. fF :

fF = fS +B · VA (34)

B is a constant with a value of value of about 0.11 kHz/mV . With the
switch “MAN”, the measurement range can be tested roughly.

4.2.4 Rectifier

In the set-up at hand, an electronic rectifier is being used. Its amplification
is constant at a large range of the incoming voltage, Vin, i.e. the output
voltage, Vout, of the precision rectifier as a function of Vin can be written as

Vout = K1· |Vin| and Vout = K10· |Vin|, (35)
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where K10 = 10 ·K1.
This means that for small signals the amplification can be increased to

achieve better measurements without distorting the data

5 The Experimental Procedure

In order to achieve optimal results, it is important to test all electronic
devices of the set-up individually after a certain heating period. This way,
potentially necessary adjustments can be applied to the final results and an
overmodulation of the components can be prevented.

5.1 Characteristics of the Rectifier

• Determine the rectifier’s transmission characteristics and derive the
constants, K1 and K10, from the measurements.

• Calculate the possible range for the input voltage.

5.2 Characteristics of the Filter

• Check the range of Vin where the filter has a constant amplification.
Plot both the input and output signal at the KO (at a frequency close
to resonance, fR) and examine the change in both signals for a change
in Vin.

• Plot the band filter’s resonance curve and determine the bandwith,
B, and the Q factor, Q,. Take care that the filter is not driven into
saturation.

5.3 Balanced Modulation

• Measure the frequency spectrum of an amplitude-modulated signal.
Choose a sinusoidal signal and watch the effect of a change in the
modulation frequency, fM , the degree of modulation, m, and the offset,
OS.

• Determine the degree of modulation in three ways: via an amplitude
analysis on the KO, via measuring the trapezium in the x-y-plot (see
figure 11) and via amplitude comparison in the frequency spectrum
(see figure 10).
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• Adjust the modulator to balanced modulation for the further measure-
ments.

5.4 Finding Fourier Spectra

Take the Fourier spectra of some periodic signals and compare the results
from the different measurements:

• band filter

• FFT analysis with the digital oscilloscope (amplitudes are given in
dB!)

• Fourier analysis of the digitally saved signal (e.g. in Mathematica)

The analysis of rectangular signals, positive pulses with varying duty cycles
and rectified sinusoidal signals is especially interesting.

Compare the measured Fourier amplitudes with the calculated values
from the series expansion and discuss the cause of possibly occurring differ-
ences.

5.5 Determining the Total Harmonic Distortion

Determine the THD of a sinusoidal signal from a signal generator of low
quality.
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6 Annex (Circuit Diagrams of the Devices)

Figure 15: Band filter

Figure 16: Modulator
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Figure 17: Rectifier

Figure 18: Ramp generator

Harmonic Analysis 28/29



7

7 Bibliography

[1] Ch. Gerthsen, H. O. Kneser, H. Vogel: “Physik”, Springer Verlag,
Berlin 1989.
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